Tag Archives: Chomsky

The Field of AI (Part 02-4): A “Pre-History” & a Foundational Context

URLs for A “Pre-History” & a Foundational Context:

  • This post is the main post on a Pre-History & a Foundational context of the Field of AI. In this post a narrative is constructed surrounding the “Pre-History”. It links with the following posts:
  • The post here is a first and very short linking with on Literature, Mythology & Arts as one of the foundational contexts of the Field of AI
  • The second part in the contextualization is the post touching on a few attributes from Philosophy, Psychology and Linguistics
  • Following, one can read about very few attributes picked up on from Control Theory as contextualizing to the Field of AI
  • Cognitive Science is the fourth field that is mapped with the Field of AI.
  • Mathematics & Statistics is in this writing the sixth area associated as a context to the Field of AI
  • Other fields contextualizing the Field of AI are being considered (e.g. Data Science & Statistics, Economy, Engineering fields)


03 — The Field of AI: A Foundational Context: Control Theory


Control Theory

When thinking at a daily and personal level, one can observe that one’s body, the human body’s physiology, seemingly has a number of controls in place for it to function properly.

Humans, among many other species, could be observed showing different types of control. One can observe control in the biological acts within the body. For instance, by the physiological nature of one’s body’s processes; be they more or less autonomous or automatic processes. Besides, for instance, the beating process of the heart, or the workings of the intestines, one could also consider processes within, e.g. the brain and those degrees of control with and through the human senses.

Humans also exert control by means of, for instance, their perceptions, their interpretations, and by a set of rituals and habitual constraints which in turn might be controlled by a set of social, cultural  or in-group norms, rules, laws and other external or internalized constraints.

Really broadening one’s view onto ‘control’: one can find the need for some form and degree of control not only within humans but also in any form of life; in any organism. In effect, to be an organism is an example of a system of cells working together, in an organized and cooperative manner, instrumental to their collective survival as unified into the organism. Come to think of it, an organism can be considered sufficiently organized and working, if some degrees and some forms of shared, synchronized control is underlying their cooperation.

Interestingly enough, to some perhaps, such control is shared, within the organism, with colonies of supportive bacteria; its microbiome (e.g. the human biome). [1] While this seems very far from the topic of this text at the same time, analogies and links between Control Theory, Machine Learning and the biological world are at the foundation of the academic field of AI.[2]

If one were to somewhat abstract the thinking on the topic of ‘control’, then these controlling systems could be seen as a support towards learning from sets of (exchanged) information or data. These systems might engage in such acts of interchanged learning, with possibly the main aim to sustain forms and degrees of stability, through adaptations, depending on needs and contextual changes. At the very least, the research surrounding complex dynamic systems can use insights in both Control Theory and consequentially, the processing potentials as promised within Machine Learning.

Control could imply the constraining of the influence of certain variables or attributes within, or in context of, a certain process. One attribute (e.g. a variable or constant) could control another attribute and vice versa. These interactions of attributes could then be found to be compounded into a more complex system.

Control seems most commonly allowing for the reduction of risks and could allow for a given form and function (not) to exist. The existence of a certain form and function of control can allow for a system (not) to act within its processes.  

When one zooms in and focuses, one can consider that perhaps similar observations and reflections have brought researchers to constructing what is known as “Control Theory.”

Control Theory is the mathematical field that studies control in systems. This is through the creation of mathematical models, and how these dynamic systems optimize their behavior by controlling processes within a given, influencing environment.[3]

Through mathematics and engineering it allows for a dynamic system to perform in a desired manner (e.g. an AI system, an autonomous vehicle, a robotic system).  Control is exercised over the behavior of a system’s processes of any size, form, function or complexity. Control, as a sub-process, could be inherent to a system itself, controlling itself and learning from itself.

In a broader sense, Control Theory[4], can be found in a number of academic fields. For instance, it is found in the field of Linguistics with, for instance, Noam Chomsky[5] and the control of a grammatical contextual construct over a grammatical function. A deeper study of this aspect, while foundational to the fields of Cognitive Science and AI, is outside of the introductory spirit of this section.

As an extension to a human and their control within their own biological workings, humans and other species have created technologies and processes that allow them to exhort more (perceived) control over certain aspects of (their perceived) reality and their experiences and interactions within it.

Looking closer, as it is found in the area of biology and also psychology, with the study of an organism’s processes and its (perceptions of) positive and negative feedback loops. These control processes allow a life form (control of its perception of) maintaining a balance, where it is not too cold or hot, not too hungry and so on; or to act on a changing situation (e.g. start running because fear is increasing).

As one might notice, “negative” is not something “bad” here. Here the word means that something is being reduced so that a system’s process (e.g. heat of a body) and its balance can be maintained and stabilized (e.g. not too cold and not too hot). Likewise, “Positive” here does not (always) mean something “good”. It means that something is being increased. Systems using these kinds of processes are called homeostatic systems.[6] Such systems, among others, have been studied in the field of Cybernetics;[7] the science of control.[8] This field, in simple terms, studies how a system regulates itself through its control and the communication of information[9] towards such control.

These processes (i.e. negative and positive feedback loops) can be activated if a system predicts (or imagines) something to happen. Note: here is a loose link with probability, thus with data processing and hence with some processes also found in AI solutions.

In a traditional sense, a loop in engineering and its Control Theory could, for instance, be understood as open-loop and closed-loop control. A closed loop control shows a feedback function.  This feedback is provided by means of the data sent from the workings of a sensor, back into the system, controlling the functioning of the system (e.g. some attribute within the system is stopped, started, increased or decreased, etc.).

A feedback loop is one control technique. Artificial Intelligence applications, such as with Machine Learning and its Artificial Neural Networks can be applied to exert degrees of control over a changing and adapting system with these, similar or more complex loops. These AI methods too, use applications that found their roots in Control Theory. These could be traced to the 1950s with the Perceptron system (a kind of Artificial Neural Network), built by Rosenblatt.[10] A number of researchers in Artificial Neural Networks and Machine Learning in general found their creative steppingstones in Control Theory. 

The field of AI has links with Cognitive Science or with some references to brain forms and brain functions (e.g. see the loose links with neurons). Feedback loops, as they are found in biological systems, or loops in general, have consequentially been referenced and applied in fields of engineering as well. Here, associated with the field of AI, Control Theory and these loops, are mainly referring to the associated engineering and mathematics used in the field of AI. In association with the latter, since some researchers are exploring Artificial General Intelligence (AGI), it might also increasingly interest one to maintain some degree of awareness of these and other links between Biology and Artificial Intelligence as a basis for sparking one’s research and creative thinking, in context.


[1]  Huang, S. et al. (February 11, 2020). Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. Retrieved on April 13, 2020 from https://msystems.asm.org/content/msys/5/1/e00630-19.full-text.pdf

[2] See for instance, Dr. Liu, Yang-Yu (刘洋彧). “…his current research efforts focus on the study of human microbiome from the community ecology, dynamic systems and control theory perspectives. His recent work on the universality of human microbial dynamics has been published in Nature…” Retrieved on April 13, 2020 from Harvard University, Harvard Medical School, The Boston Biology and Biotechnology (BBB) Association, The Boston Chapter of the Society of Chinese Bioscientists in America (SCBA; 美洲华人生物科学学会: 波士顿分会) at https://projects.iq.harvard.edu/bbb-scba/people/yang-yu-liu-%E5%88%98%E6%B4%8B%E5%BD%A7-phd and examples of papers at https://scholar.harvard.edu/yyl

[3] Kalman, R. E. (2005). Control Theory (mathematics). Online: Encyclopædia Britannica. Retrieved on March 30, 2020 from https://www.britannica.com/science/control-theory-mathematics

[4] Manzini M. R. (1983). On Control and Control Theory. In Linguistic Inquiry, 14(3), 421-446. Information Retrieved April 1, 2020, from www.jstor.org/stable/4178338

[5] Chomsky, N. (1981, 1993). Lectures on Government and Binding. Holland: Foris Publications. Reprint. 7th Edition. Berlin and New York: Mouton de Gruyter,

[6] Tsakiris, M. et al. (2018). The Interoceptive Mind: From Homeostasis to Awareness. USA: Oxford University Press

[7] Wiener, N. (1961). Cybernetics: or the Control and Communication in the Animal and the Machine: Or Control and Communication in the Animal and the Machine. Cambridge, MA: The MIT Press

[8] The Editors of Encyclopaedia Britannica. (2014). Cybernetics. Retrieved on March 30, 2020 from https://www.britannica.com/science/cybernetics

[9] Kline, R. R. (2015). The Cybernetics Moment: Or Why We Call Our Age the Information Age. New Studies in American Intellectual and Cultural History Series. USA: Johns Hopkins University Press.

[10] Goodfellow, I., et al. (2017). Deep Learning. Cambridge, MA: MIT Press. p. 13


Image Caption:

A typical, single-input, single-output feedback loop with descriptions for its various parts.”

Image source:

Retrieved on March 30, 2020 from here License & attribution: Orzetto / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

The Field of AI (Part 02-3): A “Pre-History” & a Foundational Context

URLs for A “Pre-History” & a Foundational Context:

  • This post is the main post on a Pre-History & a Foundational context of the Field of AI. In this post a narrative is constructed surrounding the “Pre-History”. It links with the following posts:
  • The post here is a first and very short linking with on Literature, Mythology & Arts as one of the foundational contexts of the Field of AI
  • The second part in the contextualization is the post touching on a few attributes from Philosophy, Psychology and Linguistics
  • Following, one can read about very few attributes picked up on from Control Theory as contextualizing to the Field of AI
  • Cognitive Science is the fourth field that is mapped with the Field of AI.
  • Mathematics & Statistics is in this writing the sixth area associated as a context to the Field of AI
  • Other fields contextualizing the Field of AI are being considered (e.g. Data Science & Statistics, Economy, Engineering fields)


02 — The Field of AI: A Foundational Context:
Philosophy, Psychology & Linguistics

Philosophy:

 In the early days of philosophy (while often associated with the Ancient Greeks, surely found in other comparable forms in many intellectual, knowledge-seeking communities throughout history) and up till present days, people create forms of logic, they study and think about the (existence, developments, meaning, processes, applications, … of) mind, consciousness, cognition, language, reasoning, rationality, learning, knowledge, and so on.   

Logic too, often has been claimed as being an Old Greek invention; specifically by Aristotle (384 B.C to 322 B.C.). It has, however, more or less independent traditions across the globe and across time. Logic lies at the basis of, for instance, Computational Thinking, of coding, of mathematics, of language, and of Artificial Intelligence. In its most basic (and etymologically), logic comes from Ancient Greek “Logos” (λόγος), which simply means “speech”, “reasoning”, “word” or “study”. Logic can, traditionally, be understood as “a method of human thought that involves thinking in a linear, step-by-step manner about how a problem can be solved. Logic is the basis of many principles including the scientific method.”[1] Note, following the result of research and development (R&D) in fields that could be associated with the field of AI and within the field of AI itself, can show that today logic, in its various forms, is not only a linear process. Moreover, at present, the study of logic has been an activity no longer limited to the field of philosophy alone and is studied in various fields including computer science, linguistics or cognitive science as well.

 One author covering a topic of AI, tried to make the link between Philosophy and Artificial Intelligence starkly clear. As a discipline, AI is offered the consideration as possibly being “philosophical engineering.”[2] In this linkage, the field of AI is positioned as one researching more philosophical concepts from any field of science and from Philosophy itself that are then transcoded, from mathematical algorithms to artificial neural networks. This linkage proposes that philosophy covers ideas that are experienced as, for instance, ambiguous or complex or open for deep debate. Historically, philosophy tried to define, or at least explore, many concepts including ‘knowledge,’ ‘meaning,’ and ‘reasoning,’ which are broadly considered to be processes or states of a larger set known as “intelligence”. The latter itself too has been a fertile topic for philosophy. The field of AI as well has been trying to explore or even solve some of these attributes. The moment it solved some expressions of these, it was often perceived as taking away not only the mystery but also the intelligence of the expressed form. The first checker or chess “AI” application is hardly considered “intelligent” these days. The first AI solution beating a champion in such culturally established board games has later been shown to lack sufficient “intelligence” to beat a newer version of an AI application. Maybe that improved version might (or will) be beaten again, perhaps letting the AI applications race on and on? Just perhaps contrary to “philosophical engineering,” would the field of AI be practically engineering the philosophy out of some concepts?

Mini
Project #___:  algorithms in daily life
Find out what “algorithm” in general (in a more non-mathematical or more non-coding sense) means. Can you find it has similarities with the meaning of “logic”? If so, which attributes seem similar?
What do you think ‘algorithm’ could mean and could be in daily life (outside of the realm of Computer Science)? Are there algorithms we use that are not found in a computer?

Mini Project #___: The Non-technological Core of AI
Collect references of what consciousness, intelligence, rationality, reasoning and mind have meant in the history of the communities and cultures around you. 
Share your findings in a collection of references from the entire class. 
Maybe add your findings to the collage (see the Literature project above).
Alternative: the teacher shares a few resources or references of philosophers that covered these topics and that are examples of the pre-history of AI.



Psychology

Psychology has influenced and is influenced by research in AI. To some degree and further developing this is still the case today.[3]

Not only as a field related to cognitive science and the study of the processes involving perception and motor control (i.e. control of muscles and movement) but also the experiments and findings from within the longer history of psychology, have been of influence in the areas of AI.

It is important to note that while there are links between the field of AI and psychology, some attributes in this area of study have been contested, opposed and surpassed by cognitive science and computer science, with its subfield of AI.

An example of a method that can be said to have found its roots in psychology is called “Transfer Learning”. This refers to a process or method learned within one area that is used to solve an issue in an entirely different set of conditions. For a machine the area and conditions are the data sets and how its artificial neural network model is being balanced (i.e. “weighted”). The machine uses a method acquired in working within one data set to work in another data set. In this way the data set does not have to be sufficiently large for the machine to return workable outputs.

The AI method known as Reinforcement Learning is one that could be said to have some similarities with experiments such as those historically conducted by Pavlov and B.F. Skinner. With Pavlov the process of “Classical Conditioning” was introduced. This milestone in the field of psychology is most famously remembered with Pavlov’s dog that started to produce saliva the moment it heard a sound of a bell (i.e. the action which Pavlov desired to observe). This sound was initially associated with the offering of food; first the bell was introduced, then the food and then the dog would produce saliva. Pavlov showed that the dog indeed did link both the bell and the food. Eventually, the dog would produce saliva at the hearing of the bell without getting any food. What is important here is that the dog has no control over the production of saliva. That means the response was involuntary; it was automatic. This is, in an over-simplified explanation, Classical Conditioning.

That stated, Reinforcement Learning (RL) is a Machine Learning method, where the machine is confronted with degrees of “reward” or the lack thereof. See the section on RL for further details. Studies surrounding reward have been found in historical research conducted by a researcher named Skinner and others. It’s interesting to add that this research has been contested by Chomsky, questioning the scientific validity and transferability to human subjects.[4] Chomsky’s critique has been considered as important in the growth of the fields of cognitive science and AI, back then in the 1950s. In these experiments a process called “Operant Conditioning” was being tested. The researchers were exploring voluntary responses (as opposed to the involuntary ones seen with Pavlov). That is to say, these were responses that were believed to be under the control of the test subject and that would lead to some form of learning, following some form of reward.

Again, these descriptions are too simplistic. They are here to nudge you towards further and deeper exploration, if this angle were to excite you positively towards your learning about areas in the academic field of AI.



Linguistics

With Linguistics come the studies of semiotics. Semiotics could be superficially defined as the study of symbols and various systems for meaning-giving including and beyond the natural languages. One can think of visual languages, such as icons, architecture, or another form is music, etc. Arguably, each sense can have its own meaning-giving system. Some argue that Linguistics is a subfield of semiotics while again others turn that around. Linguistics also comes with semantics, grammatical structures (see: Professor Noam Chomsky and the Chomsky Hierarchy)[5], meaning-giving, knowledge representation and so on.

Linguistics and Computer Science both study the formal properties of language (formal, programming or natural languages). Therefor any field within Computer Science, such as Artificial Intelligence, share many concepts, terminologies and methods from the fields within Linguistics (e.g. grammar, syntax, semantics, and so on). The link between the two is studied via a theory known as the “automata theory”[6], the study of the mathematical properties of such automata. A Turing Machine is a famous example of such an abstract machine model or automaton. It is a machine that can take a given input by executing some rule, as expressed in a given language and that in a step by step manner; called an algorithm, to end up offering an output. Other “languages” that connects these are, for instance, Mathematics and Logic.

Did you know that the word “automaton” is from Ancient Greek and means something like “self-making”, “self-moving”, or “self-willed”? That sounds like some attributes of an idealized Artificial Intelligence application, no?

Mini
Project #___: What are automatons? 
What do you know you feel could be seen as an “automaton”? 
Can you find any automaton in your society’s history?

[1] Retrieved on January 12, 2020 from https://en.wiktionary.org/wiki/logic

[2] Skanski, S. (2018). Introduction to Deep Learning. From Logical Calculus to Artificial Intelligence. In Mackie, I. et al. Undergraduate Topics in Computer Science Series (UTiCS). Switzerland: Springer. p. v . Retrieved on March 26, 2020 from http://www.springer.com/series/7592  AND https://github.com/skansi/dl_book

[3] Crowder, J. A. et al. (2020). Artificial Psychology: Psychological Modeling and Testing of AI Systems. Springer

[4] Among other texts, Chomsky, N. (1959). Reviews: Verbal behavior by B. F. Skinner. Language. 35 (1): 26–58. A 1967 version retrieved on March 26, 2020 from https://chomsky.info/1967____/

[5] Chomsky, N. (1956). Three models for the description of language. IEEE Transactions on Information Theory, 2(3), 113–124. doi:10.1109/tit.1956.1056813 AND Fitch, W. T., & Friederici, A. D. (2012). Artificial grammar learning meets formal language theory: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1933–1955. doi:10.1098/rstb.2012.0103

[6] The automata theory is the study of abstract machines (e.g. “automata”, “automatons”; notice the link with the word “automation”). This study also considers how automata can be used in solving computational problems.