Tag Archives: automaton

The Field of AI (Part 02-3): A “Pre-History” & a Foundational Context

URLs for A “Pre-History” & a Foundational Context:

  • This post is the main post on a Pre-History & a Foundational context of the Field of AI. In this post a narrative is constructed surrounding the “Pre-History”. It links with the following posts:
  • The post here is a first and very short linking with on Literature, Mythology & Arts as one of the foundational contexts of the Field of AI
  • The second part in the contextualization is the post touching on a few attributes from Philosophy, Psychology and Linguistics
  • Following, one can read about very few attributes picked up on from Control Theory as contextualizing to the Field of AI
  • Cognitive Science is the fourth field that is mapped with the Field of AI.
  • Mathematics & Statistics is in this writing the sixth area associated as a context to the Field of AI
  • Other fields contextualizing the Field of AI are being considered (e.g. Data Science & Statistics, Economy, Engineering fields)


02 — The Field of AI: A Foundational Context:
Philosophy, Psychology & Linguistics

Philosophy:

 In the early days of philosophy (while often associated with the Ancient Greeks, surely found in other comparable forms in many intellectual, knowledge-seeking communities throughout history) and up till present days, people create forms of logic, they study and think about the (existence, developments, meaning, processes, applications, … of) mind, consciousness, cognition, language, reasoning, rationality, learning, knowledge, and so on.   

Logic too, often has been claimed as being an Old Greek invention; specifically by Aristotle (384 B.C to 322 B.C.). It has, however, more or less independent traditions across the globe and across time. Logic lies at the basis of, for instance, Computational Thinking, of coding, of mathematics, of language, and of Artificial Intelligence. In its most basic (and etymologically), logic comes from Ancient Greek “Logos” (λόγος), which simply means “speech”, “reasoning”, “word” or “study”. Logic can, traditionally, be understood as “a method of human thought that involves thinking in a linear, step-by-step manner about how a problem can be solved. Logic is the basis of many principles including the scientific method.”[1] Note, following the result of research and development (R&D) in fields that could be associated with the field of AI and within the field of AI itself, can show that today logic, in its various forms, is not only a linear process. Moreover, at present, the study of logic has been an activity no longer limited to the field of philosophy alone and is studied in various fields including computer science, linguistics or cognitive science as well.

 One author covering a topic of AI, tried to make the link between Philosophy and Artificial Intelligence starkly clear. As a discipline, AI is offered the consideration as possibly being “philosophical engineering.”[2] In this linkage, the field of AI is positioned as one researching more philosophical concepts from any field of science and from Philosophy itself that are then transcoded, from mathematical algorithms to artificial neural networks. This linkage proposes that philosophy covers ideas that are experienced as, for instance, ambiguous or complex or open for deep debate. Historically, philosophy tried to define, or at least explore, many concepts including ‘knowledge,’ ‘meaning,’ and ‘reasoning,’ which are broadly considered to be processes or states of a larger set known as “intelligence”. The latter itself too has been a fertile topic for philosophy. The field of AI as well has been trying to explore or even solve some of these attributes. The moment it solved some expressions of these, it was often perceived as taking away not only the mystery but also the intelligence of the expressed form. The first checker or chess “AI” application is hardly considered “intelligent” these days. The first AI solution beating a champion in such culturally established board games has later been shown to lack sufficient “intelligence” to beat a newer version of an AI application. Maybe that improved version might (or will) be beaten again, perhaps letting the AI applications race on and on? Just perhaps contrary to “philosophical engineering,” would the field of AI be practically engineering the philosophy out of some concepts?

Mini
Project #___:  algorithms in daily life
Find out what “algorithm” in general (in a more non-mathematical or more non-coding sense) means. Can you find it has similarities with the meaning of “logic”? If so, which attributes seem similar?
What do you think ‘algorithm’ could mean and could be in daily life (outside of the realm of Computer Science)? Are there algorithms we use that are not found in a computer?

Mini Project #___: The Non-technological Core of AI
Collect references of what consciousness, intelligence, rationality, reasoning and mind have meant in the history of the communities and cultures around you. 
Share your findings in a collection of references from the entire class. 
Maybe add your findings to the collage (see the Literature project above).
Alternative: the teacher shares a few resources or references of philosophers that covered these topics and that are examples of the pre-history of AI.



Psychology

Psychology has influenced and is influenced by research in AI. To some degree and further developing this is still the case today.[3]

Not only as a field related to cognitive science and the study of the processes involving perception and motor control (i.e. control of muscles and movement) but also the experiments and findings from within the longer history of psychology, have been of influence in the areas of AI.

It is important to note that while there are links between the field of AI and psychology, some attributes in this area of study have been contested, opposed and surpassed by cognitive science and computer science, with its subfield of AI.

An example of a method that can be said to have found its roots in psychology is called “Transfer Learning”. This refers to a process or method learned within one area that is used to solve an issue in an entirely different set of conditions. For a machine the area and conditions are the data sets and how its artificial neural network model is being balanced (i.e. “weighted”). The machine uses a method acquired in working within one data set to work in another data set. In this way the data set does not have to be sufficiently large for the machine to return workable outputs.

Anything that interrupts a man taking pleasure of a physical intimacy and gets both persons disappointed. best female viagra First you need to select a dose of your own, you may search for internet generic viagra 100mg sites where lots of numbers and e-mail addresses are available. You cialis 40 mg know your partner inside out. It increases the nitric oxide level in body and curbs product of an enzyme PDE5 and emits cGMP in blood. cGMP purchase levitra why not try these out enzyme is believed indispensable for smooth blood flow in direction of male organ.

The AI method known as Reinforcement Learning is one that could be said to have some similarities with experiments such as those historically conducted by Pavlov and B.F. Skinner. With Pavlov the process of “Classical Conditioning” was introduced. This milestone in the field of psychology is most famously remembered with Pavlov’s dog that started to produce saliva the moment it heard a sound of a bell (i.e. the action which Pavlov desired to observe). This sound was initially associated with the offering of food; first the bell was introduced, then the food and then the dog would produce saliva. Pavlov showed that the dog indeed did link both the bell and the food. Eventually, the dog would produce saliva at the hearing of the bell without getting any food. What is important here is that the dog has no control over the production of saliva. That means the response was involuntary; it was automatic. This is, in an over-simplified explanation, Classical Conditioning.

That stated, Reinforcement Learning (RL) is a Machine Learning method, where the machine is confronted with degrees of “reward” or the lack thereof. See the section on RL for further details. Studies surrounding reward have been found in historical research conducted by a researcher named Skinner and others. It’s interesting to add that this research has been contested by Chomsky, questioning the scientific validity and transferability to human subjects.[4] Chomsky’s critique has been considered as important in the growth of the fields of cognitive science and AI, back then in the 1950s. In these experiments a process called “Operant Conditioning” was being tested. The researchers were exploring voluntary responses (as opposed to the involuntary ones seen with Pavlov). That is to say, these were responses that were believed to be under the control of the test subject and that would lead to some form of learning, following some form of reward.

Again, these descriptions are too simplistic. They are here to nudge you towards further and deeper exploration, if this angle were to excite you positively towards your learning about areas in the academic field of AI.



Linguistics

With Linguistics come the studies of semiotics. Semiotics could be superficially defined as the study of symbols and various systems for meaning-giving including and beyond the natural languages. One can think of visual languages, such as icons, architecture, or another form is music, etc. Arguably, each sense can have its own meaning-giving system. Some argue that Linguistics is a subfield of semiotics while again others turn that around. Linguistics also comes with semantics, grammatical structures (see: Professor Noam Chomsky and the Chomsky Hierarchy)[5], meaning-giving, knowledge representation and so on.

Linguistics and Computer Science both study the formal properties of language (formal, programming or natural languages). Therefor any field within Computer Science, such as Artificial Intelligence, share many concepts, terminologies and methods from the fields within Linguistics (e.g. grammar, syntax, semantics, and so on). The link between the two is studied via a theory known as the “automata theory”[6], the study of the mathematical properties of such automata. A Turing Machine is a famous example of such an abstract machine model or automaton. It is a machine that can take a given input by executing some rule, as expressed in a given language and that in a step by step manner; called an algorithm, to end up offering an output. Other “languages” that connects these are, for instance, Mathematics and Logic.

Did you know that the word “automaton” is from Ancient Greek and means something like “self-making”, “self-moving”, or “self-willed”? That sounds like some attributes of an idealized Artificial Intelligence application, no?

Mini
Project #___: What are automatons? 
What do you know you feel could be seen as an “automaton”? 
Can you find any automaton in your society’s history?

[1] Retrieved on January 12, 2020 from https://en.wiktionary.org/wiki/logic

[2] Skanski, S. (2018). Introduction to Deep Learning. From Logical Calculus to Artificial Intelligence. In Mackie, I. et al. Undergraduate Topics in Computer Science Series (UTiCS). Switzerland: Springer. p. v . Retrieved on March 26, 2020 from http://www.springer.com/series/7592  AND https://github.com/skansi/dl_book

[3] Crowder, J. A. et al. (2020). Artificial Psychology: Psychological Modeling and Testing of AI Systems. Springer

[4] Among other texts, Chomsky, N. (1959). Reviews: Verbal behavior by B. F. Skinner. Language. 35 (1): 26–58. A 1967 version retrieved on March 26, 2020 from https://chomsky.info/1967____/

[5] Chomsky, N. (1956). Three models for the description of language. IEEE Transactions on Information Theory, 2(3), 113–124. doi:10.1109/tit.1956.1056813 AND Fitch, W. T., & Friederici, A. D. (2012). Artificial grammar learning meets formal language theory: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1933–1955. doi:10.1098/rstb.2012.0103

[6] The automata theory is the study of abstract machines (e.g. “automata”, “automatons”; notice the link with the word “automation”). This study also considers how automata can be used in solving computational problems.

The Field of AI (part 02): A “Pre-History” & a Foundational Context.

last update: Friday, April 24, 2020

URLs for A “Pre-History” & a Foundational Context:

  • This post is the main post on a Pre-History & a Foundational context of the Field of AI. In this post a narrative is constructed surrounding the “Pre-History”. It links with the following posts:
  • This post is a first and very short linking with on Literature, Mythology & Arts as one of the foundational contexts of the Field of AI
  • The second part in the contextualization is the post touching on a few attributes from Philosophy, Psychology and Linguistics
  • Following one can read about very few attributes picked up on from Control Theory as contextualizing to the Field of AI
  • Cognitive Science is the fourth field that is mapped with the Field of AI.
  • Mathematics & Statistics is in this writing the sixth area associated as a context to the Field of AI
  • Other fields contextualizing the Field of AI are being considered (e.g. Data Science & Statistics, Economy, Engineering fields)
According to a blog associated with the Institute for Marital Healing, parents can at times be the culprit: not by treating the deeprootsmag.org prescription de viagra canada child badly, but the opposite, being too permissive and indulging a child’s selfishness. With the help of male enhancement pills, you will cherish your decision throughout your cheapest viagra for sale life. The natural means of curing erectile dysfunction cialis online australia include minimizing fat in your diet, cutting down alcohol intake, reducing cholesterol levels in the body, and exercising regularly. Go For Only Genuine Products A safe and original medication helps to lead a successful ED treatment. viagra price uk

The Field of AI: A “Pre-History”.

A “pre-history” and a foundational context of Artificial Intelligence can arguably by traced back to a number of events in the past as well as to a number of academic fields of study. In this post only a few have been handpicked.

This post will offer a very short “pre-history” while following posts will dig into individual academic fields that are believed to offer the historical and present-day context for the field of AI.

It is not too far-fetched to link the roots of AI, as the present-day field of study, with the human imagination of artificial creatures referred to as “automatons” (or what could be understood as predecessors to more complex robots).

While it will become clear here that the imaginary idea of automatons in China is remarkably older, it has been often claimed that the historic development towards the field of AI, as it is intellectually nurtured today, commenced more than 2000 years ago in Greece, with Aristotle and his formulation of the human thought activity known as “Logic”.

Presently, with logic, math and data one could make a machine appear to have some degree of “intelligence”. Note, it is rational to realize that the perception of an appearance does not mean the machine is intelligent. What’s more, it could be refreshing to consider that not all intelligent activity is (intended to be seen as) logical.

It’s fun, yet important, to add that to some extent, initial studies into logic could asynchronously be found in China’s history with the work by Mòzǐ (墨子), who conducted his philosophical reflections a bit more than 2400 years ago. 

Coming back to the Ancient Greeks: besides their study of this mode of thinking, they also experimented with the creation of basic automatons.

Automatons (i.e. self-operating yet artificial mechanical creatures) were likewise envisioned in China and some basic forms were created in its long history of science and technology.[1] An early mentioning can be found in, Volume 5 “The Questions of Tang” (汤问; 卷第五 湯問篇) of the Lièzǐ (列子)[2], an important historical Daoist text.

In this work there is mentioning of this kind of (imagined) technologies or “scientific illusions”.[3] The king in this story became upset by the appearance of intelligence and needed to be reassured that the automaton was only that, a machine …

Figure 1 King of Zhōu, who reigned a little more than 2950 years ago ( 周穆王; Zhōu Mù Wáng ) , introduced by Yen Shi, is meeting an automaton (i.e. the figure depicted with straighter lines, on the top-left), as mentioned in the fictional book Lièzǐ. Image retrieved on March 5, 2020 from here
Figure 2 Liè Yǔkòu (列圄寇/列禦寇), aka the Daoist philosopher Lièzĭ (列子) who imagined an (artificial) humanoid automaton. This visual was painted with “ink and light colors on gold-flecked paper,” by Zhāng Lù (张路); during the Míng Dynasty (Míng cháo, 明朝; 1368–1644). Retrieved on January 12, 2020 from here ; image license: public domain.

Jumping forward to the year 1206, the Arabian inventor, Al-Jazari, supposedly designed the first programmable humanoid robot in the form of a boat, powered by water flow, and carrying four mechanical musicians. He wrote about it in his work entitled “The Book of Knowledge of Ingenious Mechanical Devices.

It is believed that Leonardo Da Vinci was strongly influenced by his work.[4] Al-Jazari additionally designed clocks with water or candles. Some of these clocks could be considered programmable in a most basic sense.

figure 3 Al-jazari’s mechanical musicians machine (1206). Photo Retrieved on March 4, 2020 from here; image: public domain

One could argue that the further advances of the clock (around the 15th and 16th century) with its gear mechanisms, that were used in the creation of automatons as well, were detrimental to the earliest foundations, moving us in the direction of where we are exploring AI and (robotic) automation or autonomous vehicles today.

Between the 16th and the 18th centuries, automatons became more and more common.  René Descartes, in 1637, considered thinking machines in his book entitled “Discourse on the Method of Reasoning“. In 1642, Pascal created the first mechanical digital calculating machine.

Figure 4 Rene Descartes; oil on canvas; painted by Frans Hals the Elder (1582 – 1666; A painter from Flanders, now northern Belgium, working in Haarlem, the Netherlands. This work: circa 1649-1700; photographed by André Hatala . File retrieved on January 14, 2020 from here. Image license: public Domain

Between 1801 and 1805 the first programmable machine was invented by Joseph-Marie Jacquard. He was strongly influenced by Jacques de Vaucanson with his work on automated looms and automata. Joseph-Marie’s loom was not even close to a computer as we know it today. It was a programmable loom with punched paper cards that automated the action of the textile making by the loom. What is important here was the system with cards (the punched card mechanism) that influenced the technique used to develop the first programmable computers.

Figure 5 Close-up view of the punch cards used by Jacquard loom on display at the Museum of Science and Industry in Manchester, England. This public domain photo was retrieved n March 12, 2020 from here; image: public domain

In the first half of the 1800s, the Belgian mathematician, Pierre François Verhulst discovered the logistic function (e.g. the sigmoid function),[1] which will turn out to be quintessential in the early-day developments of Artificial Neural Networks and specifically those called “perceptrons” with a threshold function, that is hence used to activate the output of a signal, and which operate in a more analog rather than digital manner, mimicking the biological brain’s neurons. It should be noted that present-day developments in this area do not only prefer the sigmoid function and might even prefer other activation functions instead.


[1] Bacaër, N. (2011). Verhulst and the logistic equation (1838). A Short History of Mathematical Population Dynamics. London: Springer. pp. 35–39.  Information retrieved from https://link.springer.com/chapter/10.1007%2F978-0-85729-115-8_6#citeas and from mathshistory.st-andrews.ac.uk/Biographies/Verhulst.html  

In 1936 Alan Turing proposed his Turing Machine. The Universal Turing Machine is accepted as the origin of the idea of a stored-program computer. This would later, in 1946, be used by John von Neumann for his “Electronic Computing Instrument“.[6] Around that same time the first general purpose computers started to be invented and designed. With these last events we could somewhat artificially and arbitrarily claim the departure from “pre-history” into the start of the (recent) history of AI.

figure 6 Alan Turing at the age of 16. Image Credit: PhotoColor [CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)] ; Image source Retrieved April 10, 2020 from here


As for fields of study that have laid some “pre-historical” foundations for AI research and development, which continue to be enriched by AI or that enrich the field of AI, there are arguably a number of them. A few will be explored in following posts. The first posts will touch on a few hints of Literature, Mythology and the Arts.


[1] Needham, J. (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge, UK: Cambridge University.

[2] Liè Yǔkòu (列圄寇 / 列禦寇). (5th Century BCE). 列子 (Lièzǐ). Retrieved on March 5, 2020 from https://www.gutenberg.org/cache/epub/7341/pg7341-images.html  and 卷第五 湯問篇 from https://chinesenotes.com/liezi/liezi005.html   and an English translation (not the latest) from  https://archive.org/details/taoistteachings00liehuoft/page/n6/mode/2up  

[3] Zhāng, Z. (张 朝 阳).  ( November 2005). “Allegories in ‘The Book of Master Liè’ and the Ancient Robots”. Online: Journal of Heilongjiang College of Education. Vol.24 #6. Retrieved March 5, 2020 from https://wenku.baidu.com/view/b178f219f18583d049645952.html

[4] McKenna, A. (September 26, 2013). Al-Jazarī Arab inventor. In The Editors of Encyclopaedia Britannica. Online: Encyclopaedia Britannica Retrieved on March 25, 2020 from https://www.britannica.com/biography/al-Jazari AND:

Al-Jazarī, Ismail al-Razzāz; Translated & annotated by Donald R. Hill. (1206). The Book of Knowledge of Ingenious Mechanical Devices. Dordrecht, The Netherlands: D. Reidel Publishing Company. Online Retrieved on March 25, 2020 from https://archive.org/details/TheBookOfKnowledgeOfIngeniousMechanicalDevices/mode/2up

[5] Bacaër, N. (2011). Verhulst and the logistic equation (1838). A Short History of Mathematical Population Dynamics. London: Springer. pp. 35–39.  Information retrieved from https://link.springer.com/chapter/10.1007%2F978-0-85729-115-8_6#citeas and from mathshistory.st-andrews.ac.uk/Biographies/Verhulst.html

[6] Davis, M. (2018). The Universal Computer: the road from Leibniz to Turing. Boca Raton, FL: CRC Press, Taylor & Francis Group